Exercise 10

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=1+e^{x}-\int_{0}^{x} u(t) d t
$$

Solution

Differentiate both sides with respect to x.

$$
\begin{gathered}
u^{\prime}(x)=e^{x}-\frac{d}{d x} \int_{0}^{x} u(t) d t \\
u^{\prime}(x)=e^{x}-u(x) \\
u^{\prime}+u=e^{x}
\end{gathered}
$$

The initial condition to this ODE is found by plugging in $x=0$ into the original integral equation.

$$
u(0)=1+e^{0}-\int_{0}^{0} u(t) d t=2
$$

Therefore, the equivalent IVP is

$$
u^{\prime}+u=e^{x}, u(0)=2 .
$$

